Saturday, October 16, 2010

Partial ordering (posets)

See also: Mathematical Analysis - index, and in particular:



A relational graph  T  is called weakly antisymmetric  [;\Leftarrow:\Rightarrow;]
[;\bullet\quad\quad \forall_{\ x\ y}\ \left(\ \left(\left(x\ y\right) \in T\ \ \&\ \ \left(y\ x\right) \in T\right)\quad\Rightarrow\quad x=y\ \right);]

A relational graph  [;T;]  is called strongly antisymmetric   [;\Leftarrow:\Rightarrow;]

[;\bullet\quad\quad \forall_{\ x}\ (x\ x) \notin T;]

The following two properties of a relation  [;\mathbf{T} := (X\ X\ T);]  are equivalent:
  • [;\mathbf{T};]  is an equivalence and it is weakly antisymmetric;

  • [;T = \Delta_X;]



A partially ordered set, or a poset for short, is a preordered relation  [;\mathbf{T} := (X\ X\ T);],  which is (weakly) antisymmetric; thus, to write the same explicitly, a poset is characterized by the following three properties:
  1. transitivity;
  2. reflexivity
  3. weak antisymmetry



Posets admit a similar notion of sharp posets. First we define a sharp partial order relational graph  [;S;]  as transitive and strongly antisymmetric in the above sense:

[;\bullet\quad\quad\quad \forall_x (x\ x)\ \notin\ S;]

A relation  [;(X\ X\ T);]  is called a sharp poset  [;\Leftarrow :\Rightarrow;]  [;T;] is a sharp partial order relational graph.

Given relations  [;\mathbf{S} := (X\ X\ S);]  and  [;\mathbf{T} := (X\ X\ T);]  the following two equivalences hold:
  • [;\mathbf{S};] is a sharp poset  [;\Leftrightarrow;]  [;\mathbf{T};] is a poset  such that [;S = T \backslash \Delta_X;];

  • [;\mathbf{T};] is a poset  [;\Leftrightarrow;]  [;\mathbf{S};] is a sharp poset  such that [;T = S \cup \Delta_X;];

No comments:

Post a Comment