Sunday, October 17, 2010

Linear ordering (losets)

See also: Mathematical Analysis - index, and in particular:



For partial order relational graphs we will use symbols like  [;\le;],  in which case we adopt the convention:

[;\bullet\quad\quad\quad x\ \le\ y\quad\Leftarrow : \Rightarrow\quad (x\ y) \in\ \le ;]


A poset  [;(X\ X\ \le);]  is called a linear ordering or a loset  [;\Leftarrow : \Rightarrow;]

[;\bullet\quad\quad\quad \forall_{\ x\ y\ \in\ X}\ (x\le y\quad\vee\quad y\le x);]

In the same vein, a sharp poset  [;(X\ X\ \le);]  is called a sharp linear ordering or a sharp loset     [;\Leftarrow : \Rightarrow;]

[;\bullet\quad\quad\quad \forall_{\ x\ y\ \in\ X}\ (x < y\quad\vee\quad x=y\quad\vee\quad y < x);]

As in the case of posets and sharp posets, also the linear order [;\le;]  and  sharp linear order [;<;]  relational graphs in a set  [;X;]  come in pairs such that, which satisfy the following equivalent statements:
  • [;<\quad =\quad\le\ \backslash\ \Delta_X;]
  • [;\le\quad =\quad <\ \cup\ \Delta_X;]

in which case we tend to identify  [;(X\ X\ \le);]  as the same object as  [;(X\ X\ <);].


An pair  [;(A\ B);]  is a partition of a set [;X;]  [;\Leftarrow :\Rightarrow;]  [; A\cap B = \emptyset\ \ \&\ \ A\cup B = X;]. Now let  [;(X\ X\ \le);]  be a loset. A partition is called proper  [;\Leftarrow :\Rightarrow;]  both sets  [;A\ B;]  are non-empty. Finally, a proper partition  [;(A\ B);]  is called a Dedekind partition     [;\Leftarrow :\Rightarrow;]

[;\bullet\quad\quad\quad\forall_{a\in A}\forall_{b \in B}\ a \le b;]

Each Dedekind partition is of exactly one of the following three types:

  • a hole:     [;\forall_{a\in A} \exists_{a'\in A}\ a < a'\quad\quad\&\quad\quad\forall_{b\in B} \exists_{b'\in B}\ b' < b;]

  • a continuity,   where one of the two conditions holds:

    • [;\exists_{a\in A} \forall_{a'\in A}\ a' \le a\quad\quad\&\quad\quad\forall_{b\in B} \exists_{b'\in B}\ b' < b;]

    • [;\forall_{a\in A} \exists_{a'\in A}\ a < a'\quad\quad\&\quad\quad\exists_{b\in B} \forall_{b'\in B}\ b \le b';]

  • a jump:     [;\exists_{a\in A} \forall_{a'\in A}\ a' \le a\quad\quad\&\quad\quad\exists_{b\in B} \forall_{b'\in B}\ b \le b';]



In plain English this means that

  • in the case of a hole neither A has a maximal element nor B has a minimal element;

  • in the continuous case either A has a maximal element  [;a;]  or B has a minimal element  [;b;],  but not both; that unique maximal  [;a;]  or minimal  [;b;]  is called the Dedekind section of the Dedekind partition  [;(A\ B);] of  [;X;];

  • in the case of a jump the set  [;A;]  has its maximal element, and  [;B;]  has its minimal element.



A loset  [;\mathbf{L};]  is called relatively complete  [;\Leftarrow : \Rightarrow\quad\mathbf{L};]  has no holes. A relatively complete loset is called complete  [;\Leftarrow : \Rightarrow\quad\mathbf{L};]  has both its minimal and maximal elements.

A relatively complete loset  [;\mathbf{L};]  is called a Dedekind loset  [;\Leftarrow : \Rightarrow\quad\mathbf{L};]  has no jumps; or more directly (but equivalently), a loset  [;\mathbf{L};]  is Dedekind  [;\Leftrightarrow;]  every Dedekind partition in  [;\mathbf{L};]  has its Dedekind section.

No comments:

Post a Comment